Precision Editing of PLN-R14del Mutation Using a Self-Inactivating, All-in-One AAV Vector to Rescue PLN-R14del-Associated Cardiomyopathy

Emma Xu¹, Max Levine¹, Uma Lakshmanan¹, Melissa Van Pell¹, Marie Cho¹, Timothy Hoey¹, Kathryn N. Ivey¹, Huanyu Zhou¹ ¹Tenaya Therapeutics, Inc. South San Francisco, CA – 94080, USA.

PLN-R14del Gene Editing Program

(A) Second-generation Cas9 self-inactivating cassettes designs. (B) Experimental design for testing the *in vivo* Cas9 expression for first- and second- generation vectors in wild type mice. Retro-orbital (RO) injection was employed to deliver AAVs at a dose of 3E13 vg/kg. (C) Cas9 self-inactivation cease

TNGE101 Efficiently and Specifically Edits PLN-

Genotype	ΜΟΙ	Raw Editing Efficiency*
PLN ^{wt/wt}	100K	0% (0/35)
PLN ^{wt/wt}	300K	0% (0/45)
PLN R14del/R14del	100K	63.2%(24/38)
PLN R14del/R14del	300K	65.8%(25/38)

Self-inactivating Vectors Preserve Cardiac **Function and Ensure 100% Survival**

These preclinical results suggest that PLN-R14del gene editing holds promise as an approach for PLN-R14del-associated cardiomyopathy.